Evolutionary Adaptation to Temperature. Vi. Phenotypic Acclimation and Its Evolution in Escherichia C O W Albert

نویسنده

  • E BENNETT
چکیده

Abslracl.-Acclimation refers to reversible, nongenetic changes in phenotype that are induced by specific environniental conditions. Acclimation is generally assumed to improve function in the environment that induces it (the beneficial acclimation hypothesis). In this study, we experimentally tested this assumption by measuring relative fitness of the bacterium Escherichia coli acclimated to different thermal environments. The beneficial acclimation hypothesis predicts that bacteria acclimated to the temperature of competition should have greater fitness than do bacteria acclimated to any other temperature. The benefit predicted by the hypothesis was found in only seven of 12 comparisons; in the other comparisons, either no statistically demonstrable benefit was observed or a detrimental effect of acclimation was demonstrated. For example, in a lineage evolutionarily adapted to 37°C. bacteria acclimated to 37°C have a higher fitness at 32°C than do bacteria acclimated to 32°C. a result exactly contrary to prediction; acclimation to 27°C or 40°C prior to competition at those temperatures confers no benefit over 37°C acclimated forms. Consequently, the beneficial acclimation hypothesis must be rejected as a general prediction of the inevitable result of phenotypic adjustments associated with new environments. However, the hypothesis is supported in many instances when the acclimation and competition temperatures coincide with the historical temperature at which the bacterial populations have evolved. For example, when the evolutionary temperature of the population was 37°C. bacteria acclimated to 37°C had superior fitness at 37°C to those acclimated to 32°C; similarly, bacteria evolutionarily adapted to 32'C had a higher fitness during competition at 32'C than they did when acclimated to 37°C. The more surprising results are that when the bacteria are acclimated to their historical evolutionary temperature, they are frequently competitively superior even at other temperatures. For example, bacteria that have evolved at either 20°C or 32°C and are acclimated to their respective evolutionary temperatures have a greater fitness at 37°C than when they are acclimated to 37°C. Thus, acclimation to evolutionary temperature may, as a correlated consequence, enhance performance not only in the evolutionary environment, but also in a variety of other thermal environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature.

The involvement of heat-inducible genes, including the heat-shock genes, in the acute response to temperature stress is well established. However, their importance in genetic adaptation to long-term temperature stress is less clear. Here we use high-density arrays to examine changes in expression for 35 heat-inducible genes in three independent lines of Escherichia coli that evolved at high tem...

متن کامل

Evolutionary Adaptation to Temperature. v. Adaptive Mechanisms and Correlated Responses in Experimental Lines of Escherichia Coli.

We previously demonstrated temperature-specific genetic adaptation in experimental lines of Escherichia coli. Six initially identical populations were propagated for 2000 generations under each of five regimes: constant 20°C, 32°C, 37°C, and 42°C, and a daily switch between 32°C and 42°C. Glucose was the sole carbon source in all cases. Here, we examine the physiological bases of adaptation to ...

متن کامل

Evolutionary Adaptation to Temperature. Iv. Adaptation of Escherichia Coli at a Niche Boundary.

Following an environmental change, the course of a population's adaptive evolution may be influenced by environmental factors, such as the degree of marginality of the new environment relative to the organism's potential range, and by genetic factors, including constraints that may have arisen during its past history. Experimental populations of bacteria were used to address these issues in the...

متن کامل

The role of environments with extreme ecological conditions in the reductive evolutionary development processes of animal

Different groups of animals show phenotypic characters, which have been resulted by the reductive phenomena. The examples are the absence of pigmentation; dwindle of eyes in some cave-living animals, and also the absence of scale in some fishes. These characters are often leaded to evolution of new species with special adaptation that is so called "Regressive evolution". The reductive phenomena...

متن کامل

Evolution of the Control of Body Temperature: Is

The evolution of increased locomotor and activity capacities has been linked with the evolution of endothermy. Do relatively high and stable body temperatures improve locomotor performance? Studies on acclimation in salamanders and interspecific adaptation to low temperatures in lizards suggest that relatively little compensation for the depressing effects of low temperature has been developed....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004